Instructors: 1. Dr. Rola Alseidi	Philadelphia University Faculty of Science Department of Mathematics Midterm Exam	Academic Year: 2022-2023 Semester: Fall Date: 11/12/2022 Course: Linear Algebra (2) Duration: 75 Min

Name:

I.D. Number:

Question One: [6 points]

1. Consider the set

$$
V=\{(x, y): x, y \in \mathbb{R}\}
$$

and define the following operations on V

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
k \odot\left(x_{1}, y_{1}\right)=\left(0, k y_{1}\right), k \in \mathbb{R}
\end{gathered}
$$

Find
(a) $(-1,2) \oplus(0,1)$.
(b) $-2 \odot(1,-1)$
(c) Is there a zero vector in this space. Explain
(d) Is V a vector space. Explain
2. Let W be the set of all 2×2 matrices of real entries of the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

such that $b \geq 0$.
Is W is a subspace of the vector space $M_{2 \times 2}(\mathbb{R})$ with standard matrix addition and scalar multiplication.

Question Two: [6 points]
If the matrix

$$
R=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is the reduced row echelon form from the matrix

$$
A=\left[\begin{array}{cccc}
0 & 2 & 2 & 4 \\
1 & 0 & -1 & -3 \\
2 & 3 & 1 & 1 \\
-2 & 1 & 3 & -2
\end{array}\right]
$$

Find

1. A basis for the row space of A.
2. A basis for the column space of A.
3. A basis for the null space of A.
4. The rank of the matrix A.
5. The nullity of the matrix A.

Question Three: [5 points]
Show that the set $S=\left\{1-2 x, x-x^{2},-2+3 x+x^{2}\right\}$ is a linearly independent set.

Question Four: [5 points]
Find the coordinate vector of $v=(2,-1,3)$ relative to the basis $S=\{(1,0,0),(2,2,0),(3,3,3)\}$.

Question Five: [2 points]

If A is a 3×5 matrix with rank $=2$. Find

1. Rank A^{T}.
2. Nullity of A^{T}.

Question Six: [6 points]
Circle True or False. Read each statement carefully before answering.
(a) True False The set $\left\{\sin ^{2}(x), \cos ^{2}(x), \cos (2 x)\right\}$ is linearly independent.
(b) True False The null space of 3×4 matrix always has dimension at least one.
(c) True False If V is a 5-dimensional vector space, then every collection of five vectors in V is linearly independent.
(d) True False The Set $S=\{(1,2,5),(1,3,7),(1,-1,-1)\}$ is a basis for \mathbb{R}^{3}
(e) True False Let A be 3×3 matrix with rank 2, then the homogeneous system $A x=0$ has infinity many solutions.
(f) True False Any subset of a vector space must be a vector space .

Good Luck

